Home Contact Chinese CAS
Home  About Us    Research     People   International Cooperation   News     Papers   Education & Training  Join Us
Location: Home > Research > Colloquia & Seminars

The p-adic - de Rham comparison theorem, after A. Beilinson
【2013.2.18/25/3.4/11 10:00am,C610】

 Date:03-12-2013 Page Views:
Print
Text Size: A A A
Close

 2013-2-28 

  Colloquia & Seminars 

  Speaker

  Luc Illusie,Université Paris-Sud

  Title

   The p-adic - de Rham comparison theorem, after A. Beilinson

  Time

  2013.2.18/25/3.4/11 10:00am  

  Venue

  C610

  Abstract

The purpose of these lectures is to explain Beilinson's proof of the p-adic - de Rham comparison theorems using derived de Rham complexes.

(1) Review of the Betti - de Rham comparison theorem, and outline of the method

(2-3-4) Preliminaries on cotangent and derived de Rham complexes, a new look at BdR

(5-6) Statement of the p-adic Poincaré lemma and construction of the comparison map

(7-8) Proof of the p-adic Poincaré lemma. Sketch of proof of the comparison theorem.

If there is time left, sketch of crystalline variants.

References:
A. Beilinson, p-adic periods and derived de Rham cohomology, J. of the AMS, 25 (3), 715-738 (2012)
A. Beilinson, On the crystalline period map, http://arxiv.org/pdf/1111.3316.pdf

  Affiliation

   

[ Close ]  [ Top ]
  Copyright © 2012, All Rights Reserved, National Center for Mathematics and Interdisciplinary Sciences, CAS
Tel: 86-10-62613242 Fax: 86-10-62616840 E-mail: ncmis@amss.ac.cn