Home Contact Chinese CAS
Home  About Us    Research     People   International Cooperation   News     Papers   Education & Training  Join Us
Location: Home > Research > Colloquia & Seminars

Regularized Matrix Decomposition and its Applications
【2013.7.9 9:30am,S309】

 Date:03-12-2013 Page Views:
Print
Text Size: A A A
Close

 2013-6-20 

  Colloquia & Seminars 

  Speaker

      

   Jianhua Huang, Professor, Department of Statistics, Texas A&M University 

  Title

  

   Regularized Matrix Decomposition and its Applications               

 

  Time

    2013.7.9 9:30am                                      

  Venue

  S309

  Abstract

 In this talk, I will review some recent works on regularized matrix decomposition. Depending on the application, the matrix in consideration can be the data matrix, the latent canonical parameter matrix of an exponential family distribution, or the regression coefficient matrix of a multivariate regression. I will discuss use of various penalty functions for regularization purpose, including sparsity-inducing penalty, roughness penalty, and their combinations. Governed by the structure of the problem, the penalty can be designed for one-way or two-way regularization. I will illustrate the key ideas using applications in functional principal components analysis, biclustering, reconstruction of MEG/EEG source signals, and protein structure clustering using protein backbone angular distributions. This talk is based on joint works with Andreas Buja, Xin Gao, Seokho Lee, Mehdi Maadooliat, Haipeng Shen, Siva Tian, and Lan Zhou.

  Affiliation

     

[ Close ]  [ Top ]
  Copyright © 2012, All Rights Reserved, National Center for Mathematics and Interdisciplinary Sciences, CAS
Tel: 86-10-62613242 Fax: 86-10-62616840 E-mail: ncmis@amss.ac.cn